Exonic splicing signals impose constraints upon the evolution of enzymatic activity

نویسندگان

  • Alessia Falanga
  • Ozren Stojanović
  • Tina Kiffer-Moreira
  • Sofia Pinto
  • José Luis Millán
  • Kristian Vlahoviček
  • Marco Baralle
چکیده

Exon splicing enhancers (ESEs) overlap with amino acid coding sequences implying a dual evolutionary selective pressure. In this study, we map ESEs in the placental alkaline phosphatase gene (ALPP), absent in the corresponding exon of the ancestral tissue-non-specific alkaline phosphatase gene (ALPL). The ESEs are associated with amino acid differences between the transcripts in an area otherwise conserved. We switched out the ALPP ESEs sequences with the sequence from the related ALPL, introducing the associated amino acid changes. The resulting enzymes, produced by cDNA expression, showed different kinetic characteristics than ALPL and ALPP. In the organism, this enzyme will never be subjected to selection because gene splicing analysis shows exon skipping due to loss of the ESE. Our data prove that ESEs restrict the evolution of enzymatic activity. Thus, suboptimal proteins may exist in scenarios when coding nucleotide changes and consequent amino acid variation cannot be reconciled with the splicing function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intron gain by tandem genomic duplication: a novel case in a potato gene encoding RNA-dependent RNA polymerase

The origin and subsequent accumulation of spliceosomal introns are prominent events in the evolution of eukaryotic gene structure. However, the mechanisms underlying intron gain remain unclear because there are few proven cases of recently gained introns. In an RNA-dependent RNA polymerase (RdRp) gene, we found that a tandem duplication occurred after the divergence of potato and its wild relat...

متن کامل

Functional properties and evolutionary splicing constraints on a composite exonic regulatory element of splicing in CFTR exon 12

In general, splicing regulatory elements are defined as Enhancers or Silencers depending on their positive or negative effect upon exon inclusion. Often, these sequences are usually present separate from each other in exonic/intronic sequences. The Composite Exonic Splicing Regulatory Elements (CERES) represent an extreme physical overlap of enhancer/silencer activity. As a result, when CERES e...

متن کامل

RNA landscape of evolution for optimal exon and intron discrimination.

Accurate pre-mRNA splicing requires primary splicing signals, including the splice sites, a polypyrimidine tract, and a branch site, other splicing-regulatory elements (SREs). The SREs include exonic splicing enhancers (ESEs), exonic splicing silencers (ESSs), intronic splicing enhancers (ISEs), and intronic splicing silencers (ISSs), which are typically located near the splice sites. However, ...

متن کامل

mRNA-Associated Processes and Their Influence on Exon-Intron Structure in Drosophila melanogaster

mRNA-associated processes and gene structure in eukaryotes are typically treated as separate research subjects. Here, we bridge this separation and leverage the extensive multidisciplinary work on Drosophila melanogaster to examine the roles that capping, splicing, cleavage/polyadenylation, and telescripting (i.e, the protection of nascent transcripts from premature cleavage/polyadenylation by ...

متن کامل

Evidence for purifying selection against synonymous mutations in mammalian exonic splicing enhancers.

Silent sites in mammals have classically been assumed to be free from selective pressures. Consequently, the synonymous substitution rate (Ks) is often used as a proxy for the mutation rate. Although accumulating evidence demonstrates that the assumption is not valid, the mechanism by which selection acts remain unclear. Recent work has revealed that the presence of exonic splicing enhancers (E...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2014